The $$4n^2$$ 4 n 2 -Inequality for Complete Intersection Singularities

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rigid and Complete Intersection Lagrangian Singularities

In this article we prove a rigidity theorem for lagrangian singularities by studying the local cohomology of the lagrangian de Rham complex that was introduced in [SvS03]. The result can be applied to show the rigidity of all open swallowtails of dimension ≥ 2. In the case of lagrangian complete intersection singularities the lagrangian de Rham complex turns out to be perverse. We also show tha...

متن کامل

2 2 Fe b 20 01 Jet Schemes of Locally Complete Intersection Canonical Singularities

Let X be a variety defined over an algebraically closed field k of characteristic zero. The mth jet scheme Xm of X is a scheme whose closed points over x ∈ X are morphisms OX,x −→ k[t]/(t ). When X is a smooth variety, this is an affine bundle over X, of dimension (n + 1) dim X. The space of arcs X∞ of X is the projective limit X∞ = proj limmXm. Our main result is a proof of the following theor...

متن کامل

O ct 2 00 4 COMPLETE INTERSECTION LATTICE

In this paper we completely characterize lattice ideals that are complete intersections or equivalently complete intersections finitely generated semigroups of ZZn ⊕ T with no invertible elements, where T is a finite abelian group. We also characterize the lattice ideals that are set-theoretic complete intersections on binomials.

متن کامل

Complete Intersection Singularities of Splice Type as Universal Abelian Covers

It has long been known that every quasi-homogeneous normal complex surface singularity with Q–homology sphere link has universal abelian cover a Brieskorn complete intersection singularity. We describe a broad generalization: First, one has a class of complete intersection normal complex surface singularities called “splice type singularities,” which generalize Brieskorn complete intersections....

متن کامل

2 4 Ja n 20 07 WEIGHTED POINCARÉ INEQUALITY AND RIGIDITY OF COMPLETE MANIFOLDS

Abstract. We prove structure theorems for complete manifolds satisfying both the Ricci curvature lower bound and the weighted Poincaré inequality. In the process, a sharp decay estimate for the minimal positive Green’s function is obtained. This estimate only depends on the weight function of the Poincaré inequality, and yields a criterion of parabolicity of connected components at infinity in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Arnold Mathematical Journal

سال: 2016

ISSN: 2199-6792,2199-6806

DOI: 10.1007/s40598-016-0060-8